ScholarMate
客服热线:400-1616-289

Real-Time Monocular Vision System for UAV Autonomous Landing in Outdoor Low-Illumination Environments

Lin, Shanggang*; Jin, Lianwen; Chen, Ziwei
Science Citation Index Expanded
-

摘要

Landing an unmanned aerial vehicle (UAV) autonomously and safely is a challenging task. Although the existing approaches have resolved the problem of precise landing by identifying a specific landing marker using the UAV's onboard vision system, the vast majority of these works are conducted in either daytime or well-illuminated laboratory environments. In contrast, very few researchers have investigated the possibility of landing in low-illumination conditions by employing various active light sources to lighten the markers. In this paper, a novel vision system design is proposed to tackle UAV landing in outdoor extreme low-illumination environments without the need to apply an active light source to the marker. We use a model-based enhancement scheme to improve the quality and brightness of the onboard captured images, then present a hierarchical-based method consisting of a decision tree with an associated light-weight convolutional neural network (CNN) for coarse-to-fine landing marker localization, where the key information of the marker is extracted and reserved for post-processing, such as pose estimation and landing control. Extensive evaluations have been conducted to demonstrate the robustness, accuracy, and real-time performance of the proposed vision system. Field experiments across a variety of outdoor nighttime scenarios with an average luminance of 5 lx at the marker locations have proven the feasibility and practicability of the system.

关键词

unmanned aerial vehicle autonomous landing low-illumination marker detection real-time