摘要
In order to minimize the knowledge gap between single and binary pollutants degradation by persulfate-based advanced oxidation processes (PS-AOPs), iron-loaded N-doped carbon nanotubes (Fe-NCNT) and its acidwashing sample (Fe-NCNT-W) were synthesized as peroxymonosulfate (PMS) activator for simultaneous oxidation of acid orange 7 (AO7) and electron-rich (phenol/ibuprofen) or electron-deficient pollutants (nitrobenzene/benzoic acid). Mechanistic studies revealed that both radical (HO & BULL;, SO4 & BULL; ) and nonradical (electrontransfer, high-valent iron) pathways involved for organic oxidation in Fe-NCNT/PMS system, while electrontransfer pathway (ETP) and high-valent iron-oxo species accounted for pollutant degradation at the surface and inner space of Fe-NCNT-W, respectively. The oxidation performances in single or binary systems were systematically investigated. In comparison to benchmark radical-based (Fe2+/PMS), nonradical ETP (NCNT/ PMS) and mixed (Fe-NCNT/PMS) systems, Fe-NCNT-W/PMS outperformed superior performance toward oxidation of binary pollutants with little inference from solution pH or background substances, which could also
-
单位浙江工业大学; y; 南昌航空大学; 环境保护部华南环境科学研究所