摘要

Surface modification has been adopted to tune surface property of nanofiltration membrane for improved separation performance. However, it has rarely been explored to modulate membrane pore size distribution. Here, we reported a novel modification strategy combined with surface cross-linking and in-situ condensation for fabricating composite nanofiltration membrane with reduced and homogenized pore size. The strategy was fulfilled by soaking the surface of nascent polyamide-based membrane with an aqueous solution of 3-aminopropyltriethoxysilane (APTES). Membrane physico-chemical property analyses demonstrated that the hydrolyzed APTES molecules bonded onto membrane surface through amidation and esterification reactions with the residual acyl chloride groups, and chemically combined with each other through condensation reaction. Modification was found to hydrophilize membrane surface, homogenize pore size and reduce mean pore diameter. The modification under desired conditions led to an improvement in pure water permeance from 12.2 to 14.0 l/m2 h bar, a decrease in geometric mean pore diameter from 0.71 nm to 0.63 nm, and a decline in geometric standard deviation from 1.32 to 1.23. Permeation test results showed that the APTES-modified membrane also exhibited improved removal performance to methylene blue and cresol red removal and enhanced antifouling resistances to model foulants cetyltrimethylammonium bromide, humic acid and bovine serum albumin.

  • 单位
    浙江理工大学; 浙江工业大学

全文