Summary

针对现代工业过程多变量、过程数据通常同时包含高斯性和非高斯性分布的特点,提出了一种基于混合子空间的系统性能监控与故障诊断方法。首先使用小波去噪、PCA和ICA方法来进行过程检测,然后将基于PCA特征子空间距离相似度和基于ICA子空间余弦相似度的方法结合,建立故障诊断库,计算混合相似度,确定各类故障的诊断阈值。最后对在线的数据进行监控,判断过程是否正常。当有故障发生时,利用混合子空间相似度确定故障类型。该方法可以充分利用过程数据中的高斯和非高斯信息。通过对Tennessee Eastman(TE)过程的仿真研究,验证了该方法的可行性与有效性,与变量贡献图方法相比可以更加有效地监测出故障原因。

  • Institution
    东北大学