ScholarMate
客服热线:400-1616-289

Augmented weighting estimators for the additive rates model under multivariate recurrent event data with missing event type

Ma, Huijuan*; Pang, Weicai; Sun, Liuquan; Xu, Wei
Science Citation Index Expanded
中国科学院

摘要

Multivariate recurrent event data are frequently encountered in biomedical and epidemiological studies when subjects experience multiple types of recurrent events. In practice, the event type information may be missing due to a variety of reasons. In this article, we consider a semiparametric additive rates model for multivariate recurrent event data with missing event types. We develop the augmented inverse probability weighting technique to handle event types that are missing at random. The nonparametric kernel-assisted proposals for the missing mechanisms are studied. The resulting estimator is shown to be consistent and asymptotically normal. Extensive simulation studies and a real data application are provided to illustrate the validity and practical utility of the proposed method.

关键词

additive rates model missing at random multivariate recurrent event data Nadaraya-Watson kernel estimator weighted estimating equation