摘要
With the increasing penetration of offshore wind power capacity into power systems, extreme typhoon events have been severely threatening the secure operation of a power system with multiple offshore wind farms (OWFs). To alleviate this problem, this paper proposes an optimal resilience enhancement dispatch (ORED) framework consisting of three stages: preventive control, emergency response, and rapid restoration. Combining the wind field model of typhoon and the probability distribution model of typhoon parameters, a Wasserstein distance-based ambiguity set (AS) is constructed for describing the uncertainty of typhoons. In addition, a dis-tributionally robust chance constraint-based ORED (DRCC-ORED) model, which considers uncertain typhoon parameters, is established for a power system with multiple OWFs. A conditional value-at-risk (CVaR) approx-imation method is used to transform the DRCCs with random variables into linear constraints, and the expec-tation operation of the cost function under the worst probability distribution is reformulated. Further, the proposed bi-level DRCC-ORED model is transformed into a single-level mixed-integer second-order cone pro-gramming model, which can be efficiently solved by the commercial solver GUROBI. Case studies on the modified IEEE 39-bus system with an OWF and an actual provincial power system with four OWFs demonstrate the high effectiveness of the proposed model.