Summary

目的探讨随机梯度boosting算法(SGB)对代谢组学数据分类判别和代谢物筛选的效果。方法每一次迭代均根据损失函数最小化原则得出"伪残差",并用最小二乘法对其构建基础分类器(决策树),最终组合各分类器形成随机梯度boosting模型。通过模拟实验和真实代谢组学数据的分析,与Adaboost、RF、SVM三种算法进行比较。结果无论是在模拟条件下还是真实数据中,随机梯度boosting算法的分类准确性都优于其他三种算法。算法可评价各代谢物重要性,有效地筛选出部分代谢物。结论随机梯度boosting算法适用于代谢组学数据研究,对疾病早期诊断、治疗和预后具有重要价值,值得进一步研究和探索。

  • Institution
    哈尔滨医科大学; 复旦大学