摘要
Micro (nano)plastics (MNPs) have become emerging environmental contaminants, yet their toxicity and systemic effects via intranasal exposure remain unclear. This study investigated the in vitro toxicity of thirteen polystyrene MNPs with different surface functionalization (carboxylic (C-PS), amino (A-PS), and bare (PS)) and sizes (20-2000 nm) on human nasal epithelial cells (HNEpCs) at 10-1250 mu g/mL as well as their in vivo toxicity to rats via intranasal administration at 125 mu g/mL. The in vitro study showed that PS20, PS50, A-PS50, PS500, and A-PS500 significantly inhibited cell viability, which was dependent on particle concentration. A-PS induced higher cytotoxicity than C-PS and PS, and most MNPs inhibited cell proliferation after 24-h. Flow cytometry analysis suggested that PS induced cell apoptosis, while A-PS caused cell necrosis. MNPs were phagocytosed by HNEpCs and entered nucleus. The in vivo study showed that MNPs inhibited dietary behaviors of rats. Histological analysis indicated that PS20, PS200, and A-PS50 thinned out nasal mucosa. Immunohistochemical analysis revealed that exposure to PS20, PS200, and A-PS50 enhanced expression of transient receptor potential cation channel sub-family M (melastatin) member 8 (TRPM8). Systemic effects including hepatocyte cytoplasmic vacuolation and renal tubule dilatation were observed. The results suggested that nasal inhalation of MNPs may disturb energy metabolism and damage upper respiratory tract, liver, and kidneys.
-
单位汕头大学; 南方医科大学; 广东省人民医院; 华南农业大学