Wide-field mid-infrared single-photon upconversion imaging
摘要
Frequency upconversion technique, where the infrared signal is nonlinearly translated into the visible band to leverage the silicon sensors, offers a promising alternation for the mid-infrared (MIR) imaging. However, the intrinsic field of view (FOV) is typically limited by the phase-matching condition, thus imposing a remaining challenge to promote subsequent applications. Here, we demonstrate a wide-field upconversion imaging based on the aperiodic quasi-phase-matching configuration. The acceptance angle is significantly expanded to about 30 degrees, over tenfold larger than that with the periodical poling crystal. The extended FOV is realized in one shot without the need of parameter scanning or post-processing. Consequently, a fast snapshot allows to facilitate high-speed imaging at a frame rate up to 216 kHz. Alternatively, single-photon imaging at room temperature is permitted due to the substantially suppressed background noise by the spectro-temporal filtering. Furthermore, we have implemented high-resolution time-of-flight 3D imaging based on the picosecond optical gating. These presented MIR imaging features with wide field, fast speed, and high sensitivity might stimulate immediate applications, such as non-destructive defect inspection, in-vivo biomedical examination, and high-speed volumetric tomography. @@@ The authors present a simple yet effective solution to dramatically boost the performances of an upconversion imaging system, which leads to unprecedented mid-infrared imaging features with large field of view, single-photon sensitivity and a MHz-level frame rate.
