摘要

The electrocatalytic preparation of hydrogen at different pH values not only achieves excellent device performance but also promotes the application of reactive oxygen species (ROS) clearance and hydrogen anti-inflammation. However, it is difficult to develop materials that simultaneously achieve these excellent properties. Herein, the preparation of beaded necklace-like Co9Se8 microspheres using a general and facile synthetic strategy is reported. The Co9Se8-modified electrode has three applications: efficient water splitting for enhanced performance, ROS scavenging, and hydrogen anti-inflammatory activity. Experiments, high-angle-annular-dark-field scanning transmission electron microscopy, and density functional theory calculations indicate that the reconstructed Co(OH)(2) plays a vital role in the oxygen evolution reaction and that the transition from *O to *OOH is the actual rate-determining step. The Co9Se8 material, with its unique beaded necklace-like structure, exhibits exceptional hydrogen production capabilities in phosphate buffer solution (pH 7.4). In particular, hydrogen produce under neutral conditions can effectively reduce ROS levels and significantly inhibit inflammation-related pathological processes, playing a unique antioxidant and anti-inflammatory role at the cellular level. The obtained results indicate that the as-synthesized Co9Se8 is more suitable for water splitting, ROS scavenging, and hydrogen anti-inflammatory applications, outperforming other transition metal electrodes and rendering practical industrial and clinical applications.

  • 单位
    上海交通大学; 西安交通大学

全文