摘要

针对现有和声搜索算法存在的不足,提出一种学习型和声搜索算法(LHS).根据目标函数值的变化,自适应调整和声记忆考虑概率(HMCR);引入学习机制,加快算法的搜索速度;动态调节基音调整概率(PAR),增强算法的全局搜索能力.对16个标准函数的测试结果表明,所提出的LHS算法与其他4种和声搜索算法相比具有较好的效果.最后将改进算法应用于10个0-1背包问题和1个经典的50维背包实例,实验结果表明LHS算法优于其他算法.

  • 单位
    东北大学; 徐州师范大学; 自动化学院