Effects of casein phosphopeptides on thermal stability and sensory quality of whey protein emulsions containing calcium beta-hydroxy-beta-methylbutyrate
摘要
This study aimed to elucidate the effect of casein phosphopeptides (CPP) on the thermal stability and sensory quality of whey protein emulsions containing calcium beta-hydroxy-beta-methylbutyrate (WPEs-HMB-Ca). The interaction mechanism among CPP, HMB-Ca, and WP in the emulsions before and after autoclaving (121 degrees C, 15 min) was systematically investigated from macroscopic external and microscopic molecular perspectives. It was found that WPEs-HMB-Ca treated by autoclaving resulted in an increase in droplet size (d4,3 = 24.09 & mu;m) due to aggregation/flocculation of proteins, along with a stronger odor with higher viscosity, compared to those without autoclaving. When CPP:HMB-Ca = 1:25 (w/w) in the emulsion, the droplets exhibited a more uniform and consistent state in the emulsion. In addition, CPP was able to inhibit the formation of complex spatial network structures of proteins during autoclaving by binding with Ca2+, thus improving the thermal stability and storage stability of WPEs-HMB-Ca. This work might provide theoretical guidance for developing functional milk drinks with good thermal stability and flavor.
