摘要
In this study, Ti2AlC/Ti2AlN powders were first incorporated to fabricate low-carbon MgO-C refractories, and their oxidation behaviors were investigated. Computed tomography (CT) results indicated that stress cracks only occurred in the Ti2AlC-added sample after exposure to 1100 degrees C, and the anomalous oxidation behavior of Ti2AlC powder at 578 degrees C worsened the oxidation result at 1100 degrees C for MgO-C refractories with Ti2AlC. At 1500 degrees C, the oxidation behaviors of MgO-Ti2AlC/Ti2AlN-C samples revealed a slight mass gain due to the disintegration of Ti2AlC/Ti2AlN, and their oxidation resistances increased by 18% as compared to their counterparts. In addition, the role of Ti2AlC/Ti2AlN was elucidated. The oxidation process was comprehensive and was mainly determined by the deterioration of carbon and MAX phases. The obtained results indicated that Ti2AlN was more suitable for fabricating low-carbon MgO-C refractories as compared with Ti2AlC.
-
单位y