摘要

针对传统的关联规则在试卷评估中应用出现的问题:由于试题的难易程度不同,被答对的概率也不一样,即数据集中数据项发生的概率不一样,数据项具有倾斜支持度分布的特征,选择合适的支持度阈值挖掘这样的数据集相当棘手。文章提出了基于试题难度系数加权的关联规则挖掘算法,从而解决因试题难度不同而导致数据项出现的概率不均的问题,发现更多有趣的关联规则,并且理论上证明了基于难度系数的加权关联规则算法保持频繁项集向下封闭的重要特性。