摘要
The influences of operating temperature, catalyst types and mixing ratios on co-pyrolysis of camellia shell (CS) and take-out solid waste (TSW) were investigated through orthogonal experiments design. The target was to gain more aliphatic hydrocarbons and monocyclic aromatic hydrocarbons (MAHs) and reduce the production of acids. According to orthogonal experiments results, higher temperature contributed to generate aliphatic hydrocarbons and inhibit formation of acids. Combined utilization of HZSM-5 and CaO was effective to obtain more MAHs and reduce acids. With the improvement of proportion of TSW, the yield of aliphatic hydrocarbons increased and acids decreased. The mixing ratio of CS and TSW was 3:7, 700 degrees C was chosen as operating temperature and combined utilization of HZSM-5 and CaO were identified. The apparent activation energy (E-ave) of CS, TSW and their blends were calculated. 3CS7TSW had the lowest Eave which were 165.33 kJ/mol (by OFW) and 163.14 kJ/mol (by KAS).