摘要

Simultaneous redox reactions on photocatalysts make it possible to use wastewater for hydrogen produc-tion. The controlled synthesis of ultrasmall metal carbides effectively enhances the photocatalytic effi-ciency under this system. Here, we report a new type of cocatalyst in which a three-dimensional (3-D) nitrogen-doped carbon cage (NGC) of metal-organic framework derivatives encapsulates ultrasmall MoC nanoparticles (MoC@NGC), promoting simultaneous degradation of organic pollutants and hydro-gen production by ZnIn2S4 (ZIS). Characterization analyses showed that MoC accelerated the separation of the photogenerated carrier and effectively reduced the overpotential of hydrogen evolution, while NGC promoted the good dispersion of MoC particles and provided sufficient sites. The MoC@NGC/ZIS compos-ite exhibited a high hydrogen (H2) evolution rate of 1012 lmol g-1h-1, which exceed that of ZIS loaded with platinum. In the coupled system, where the electron donor was replaced with rhodamine B (RhB), the mechanism analysis showed that RhB and the as-generated intermediates consumed holes and facil-itated hydrogen evolution. In addition, we designed a combined photocatalytic anoxic and oxic sequence process to achieve the recovery of hydrogen energy during the treatment of dye wastewater. This study provides a new way for cooperation between energy development and environmental protection.

  • 单位
    y