针对中低分辨率车型识别问题,建立一种改进的卷积神经网络(CNN)特征融合模型。采取特征融合策略对CNN中的不同低层特征进行融合重复利用。为防止出现过拟合现象,结合网络模型稀疏化的结构,使用数据增强方法优化训练数据。分析和实验结果表明,该模型不仅能产生更具区分性的特征,而且能避免由环境等因素引起的干扰,与传统CNN模型相比,具有更高的识别准确率。