摘要
In this study, the multi-objective optimal design of the Hinge Sleeve of Cubic (HSC) was achieved by combining the central composite design (CCD), Kriging and multi-objective genetic algorithm (MOGA) approaches. Firstly, the model of the HSC was established and the appropriate design variables were selected. The mass, the maximum deformation and the maximum equivalent stress of the HSC were taken as the optimization objectives. After comparative analysis of the parameters, the parameter with the greatest influence on the optimization objectives was selected as the geometric constraint. Subsequently, according to the results of the experimental design, the Kriging model was used to establish the response surface optimization model of the objective function. And finally the best optimization results were obtained by using MOGA. The experimental results show that the optimization strategy is reliable and the mass of the optimized model is reduced by 24.84%, which achieves the lightweight design of the HSC while meeting the actual production requirements, saves the design cost and improves the material utilization.
-
单位桂林理工大学