摘要

Application of exogenous hydrogen sulfide (H2S) is a novel strategy for alleviation of the adverse effects caused by abiotic stresses. However, little is known about H2S-mediated global molecular response of rice seedlings to thiocyanate (SCN-) exposure. Herein, a hydroponic experiment was carried out to investigate the crucial role of exogenous H2S in alleviation of SCN- toxicity generated at different effective concentrations (EC20: 24.0 mg SCN/L, EC50: 96.0 mg SCN/L, and EC75: 300.0 mg SCN/L) in rice seedlings through transcriptome analysis. The results showed that the total numbers of differentially expressed genes (DEGs, upregulated genes/downregulated genes) in rice roots were 755/313, 1114/3303, and 2184/7427, while they were 427/292, 2134/526, and 2378/890 in rice shoots at EC20, EC50, and EC75 of SCN-, respectively. When exogenous H2S was supplied to rice seedlings exposed to SCN-, the total number of DEGs (upregulated genes/downregulated genes) in rice roots was 1158/316, 1943/2959, and 1737/5392, while it was 2067/937, 2689/683, and 3492/1062 in rice shoots at EC20, EC50, and EC75 of SCN-, respectively. Upregulated DEGs in shoots were positively correlated with SCN- concentration in the presence of exogenous H2S, suggesting its crucial role in regulating the phytotoxicity of SCN-. Gene function and pathway enrichment analyses showed that exogenous H2S triggered "secondary metabolite synthesis," "metabolic pathways," and "signal transduction mechanisms" in rice seedlings corresponding to different effective concentrations of SCN- exposure.

  • 单位
    桂林理工大学