Summary
Skin is the first barrier of the immune system, protecting the body from various damages of the external envi-ronment, the signal transduction between skin cells plays an important role in skin healing and injury. Scanning electrochemical microscopy (SECM) combined with a Transwell co-culture device has been proposed to in-situ investigate the signal transduction between skin cells with UVB irradiation, in which, keratinocyte HaCaT cells and fibroblast HFF cells were used as signaling cells and signal-receiving cells, respectively. Extracellular ROS and pH, cell membrane permeability and cell height were in-situ monitored by multi-potential step waveform in SECM (SECM-MPSW), potentiometric mode, shear force mode and the probe approach curve (PAC) combined with COMSOL simulation, respectively. The results revealed that UVB irradiation stimulated HaCaT cells to release excess H+, which diffused to HFF cells and increased the ROS release and membrane permeability with unchanged cell height. Therefore, this work provides an effective way to in-situ investigate intercellular signal transduction.