摘要

本文介绍了国内常用磁性电子测斜仪的结构和测斜原理,分析了其本身和工作过程中可能存在的误差及其来源。针对井眼姿态测量中的主要测量参数之一方位角,基于径向基函数(RBF)神经网络补偿算法,建立了以实测井斜角和方位角构成的二维向量为输入、标准方位角构成的一维向量为输出的三层RBF神经网络模型,并用实际测斜仪的测量数据进行现场测试。测试结果表明,采用该RBF神经网络补偿算法,建模时间短,可将方位角的实际测量精度从±2.1°提高至±1.9°以内,误差补偿效果好。

  • 单位
    延安大学