针对量子智能算法对高维函数的优化时存在容易陷入局部最优的问题,提出了量子禁忌搜索算法.在量子比特相位增量空间方面,提出了一种按指数级别下降并可动态循环调整的策略;在候选解相位邻域空间方面,提出了一种与禁忌表中最优解有关的可动态调整的划分方法,并增加了候选解局部优化处理方法.为了验证算法的有效性,在高维函数极值问题和多维背包问题进行了仿真,结果表明本文算法收敛速度快,求解精度高.