Summary

提出了一种正交指数约束的平滑非负矩阵分解方法,该方法将非负矩阵分解为基矩阵、列归一化平滑矩阵和系数矩阵之积,同时在目标函数中加入了正交指数约束,保证了低维特征的非负性和局部化,减小了分解误差,提高了稀疏性的调节能力。将该方法应用于数据降维、特征稀疏性比较、有遮挡人脸识别和视频运动特征提取。实验结果表明,该方法比同类方法具有更好的性能。

  • Institution
    电子工程学院; 西安电子科技大学