摘要
Alloying Pt with 3d transition metals has proven to be the most attractive oxygen reduction reaction electrocatalysts for proton exchange membrane fuel cells with improved catalytic activity and stability; thus, their large-scale and cost-effective production is in high demand. Herein, we present a strategy for the batch preparation of PtCo/C with a highly uniform morphology and tiny PtCo dispersions of 2.48 nm using a continuous-flow microwave pipeline reactor. Due to its unique structure, which greatly facilitated the catalytic kinetics, the prepared PtCo/C catalyst exhibited an initial mass activity of 485.6 mA center dot mg(pt)(-1) at 0.9 V, which was 3.6 times higher than that of the commercial Pt/C catalysts. The as-obtained PtCo/C was able to maintain 74.6% of the initial activity after 30,000 accelerated cycle tests. Furthermore, a maximum power density of 1.76 W center dot cm(-2) was attained in a single-cell test under 0.2 mg center dot cm(-2) Pt loading conditions, far exceeding those of commercial Pt/C catalysts.
-
单位清华大学