摘要

The (G'/G)-expansion method is firstly extended to construct exact non-traveling wave general solutions of high-dimensional nonlinear equations, explore special soliton-structure excitation and evolution, and investigate the chaotic patterns and evolution of these solutions. Taking as an example, new non-traveling solutions are calculated for (3 1)-dimensional nonlinear Burgers system by using the (G'/G)-expansion method. By setting properly the arbitrary function in the solutions, special soliton-structure excitation and evolution are observed, and the chaotic patterns and evolution are studied for the solutions.