摘要
Rechargeable aqueous Zn-based batteries are highly desirable for future applications in large-scale energy storage since they are inexpensive and safe in comparison with lithium-ion batteries (LIBs). Additionally, the high energy density of Zn batteries, nearly comparable to that of LIBs, stands out in all types of aqueous batteries. Fast charge, extremely important in practical application, is another typical characteristic in aqueous batteries compared to LIBs with organic electrolyte, but little attention has been paid to it thus far. Herein, ultrafast charge of the cathodes in Zn batteries are realized through the rapid conversion of low-valence transition-metal ions to their high-valence solid oxides using a simple high potential deposition strategy. In particular, the Mn-based cathode exhibits a charge time that is only around 1/40 of that by traditional constant-current charge method, while high capacity is acquired simultaneously due to the multivalent conversion.
-
单位y