摘要

In this manuscript we propose a structural condition on nonseparable Hamiltonians, which we term displacement monotonicity condition, to study second-order mean field games master equations. A rate of dissipation of a bilinear form is brought to bear a global (in time) well-posedness theory, based on a priori uniform Lipschitz estimates on the solution in the measure variable. Displacement monotonicity being sometimes in dichotomy with the widely used Lasry-Lions monotonicity condition, the novelties of this work persist even when restricted to separable Hamiltonians.