摘要

Let G be a simple graph on n vertices. The Laplacian Estrada index of G is defined as LEE(G) = Sigma(n)(i=1)e(mu i), where mu(1), mu(2), . . . mu(n), are the Laplacian eigenvalues of G. In this paper, we give some upper bounds for the Laplacian Estrada index of graphs and characterize the connected (n, m)-graphs for n + 1 <= m <= 3n-5/2 and the graphs of given chromatic number having maximum Laplacian Estrada index, respectively.

  • 单位
    复旦大学; 华南师范大学; 广东工业大学

全文