ScholarMate
客服热线:400-1616-289

Nitrogen removal from pharmaceutical wastewater using simultaneous nitrification-denitrification coupled with sulfur denitrification in full-scale system

Gao, Jian; Wu, Jingyu; Chen, Shuyan; Chen, Yuancai*
Science Citation Index Expanded
-

摘要

Fermentation pharmaceutical wastewater (FPW) containing excessive ammonium and low chemical oxygen demand (COD)/nitrogen ratio (C/N ratio) brings serious environmental risks. The stepwise nitrogen removal was achieved in a full-scale anaerobic/aerobic/anoxic treatment system with well-constructed consortia, that enables simultaneous partial nitrification-denitrification coupled with sulfur autotrophic denitrification (SPND-SAD) (-99 % (NH4+-N) and -98 % (TN) removals) at the rate of 0.8-1.2 kg-N/m3/d. Inoculating simultaneous nitrification-denitrification (SND) consortia in O1 tank decreased the consumed Delta COD and Delta COD/Delta TN of A1 + O1 tank, resulting in the occurrence of short-cut SND at low C/N ratio. In SAD process (A2 tank), bio-generated polysulfides reacted with HS- to rearrange into shorter polysulfides, enhancing sulfur bioavailability and promoting synergistic SAD removal. PICRUSt2 functional prediction indicated that bioaugmentation increased genes related to Nitrogen/Sulfur/Carbohydrate/Xenobiotics metabolism. Key functional gene analysis highlighted the enrichment of nirS and soxB critical for SPND-SAD system. This work provides new insights into the application of bioaugmentation for FPW treatment.

关键词

Fermentation pharmaceutical wastewater Bioaugmentation Simultaneous partial nitrification and denitrification Sulfur autotrophic denitrification