摘要
Recently, cellulose-based stimuli-responsive nanomaterials have received significant attention because of its natural source and biocompatibility. In this study, cellulose-graft-poly(nisopropylacrylamide)-co-2-methylacrylic acid 2-carbazol-9-yl-ethyl ester (cellulose-g-(PNIPAAm&PCz)) block polymers were successfully synthesized by homogeneous atom transfer radical polymerization (ATRP) in LiCl/N,N-dimethylacetamide (DMAc) dissolution system. The block polymers showed different properties due to the different PCz content. The block polymer with low PCz content (cellulose-g-(PNIPAAm&PCz)1) was dispersed in water at 25 degrees C and self assembled into micelles at 37 degrees C. On the other hand, the block polymer with high PCz content (cellulose-g(PNIPAAm&PCz)2) was dissolved in DMF, THF, DMSO firstly, and dialyzed at 25 degrees C, 37 degrees C and 60 degrees C respectively to obtain the micelles. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) indicated that the distribution range of micelles formed by cellulose-g-(PNIPAAm&PCz)1 was narrower than cellulose-g(PNIPAAm&PCz)2. And the sizes of the micelles formed by cellulose-g-(PNIPAAm&PCz)2 had little difference under different solvents, but became bigger with the temperature increased. The micelles displayed thermoenhanced fluorescence due to the thermal-driven chain dehydration of the grafted PNIPAAm brushes, which is contrary to the decrease of the fluorescence of the monomer when the temperature increased. The results provided a potential for the application of cellulose-based stimuli-responsive micelles in the field of drug delivery and fluorescent probes.