摘要

为寻求适合离散和连续变量并存数据特点的最佳训练算法,本文对基于三角波,梯形,Gaussian隶属函数的Takagi-Sugeno型分层混合模糊-神经网络训练算法进行综合比较研究,使用梯度下降法详细推导了各个参数的迭代规则,并给出了完整的训练算法和详细的参数调整过程.以Pyrimidines和Heart-UCI为数据分别进行函数逼近与数据分类实验,并与经典的BP算法比较.实验结果表明Takagi-Sugeno型分层混合模糊-神经网络在高维且离散与连续变量混合的函数逼近和分类上比BP神经网络更具优势,而基于Gaussian隶属函数的训练算法函数逼近精度比基于三角波和梯形隶属函数的训练算法精度更高.