摘要
Organophosphate flame retardants (OPFRs) are emerging environmental pollutants that are increasingly being used in consumer commodities. The adverse effects on biota induced by tris(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPHP) have become a growing concern. Unfortunately, toxic mechanisms at the molecular level for OPFRs in organisms are still lacking. Herein, Escherichia coli (E.coli) was exposed to TCEP and TPHP for 24 and 48 h to reveal oxidative stress response and molecular toxicity mechanisms. The results indicated that promotion of ROS overload occurred at higher dosages groups. The levels of SOD and CAT were significantly elevated along with the increase of MDA attributed to lipid peroxidation. Additionally, apoptosis rates increased, accompanied by a decline in membrane potential and Na+/K+-ATPase and Ca2+/Mg2+-ATPase contents, signifying that E. coli cytotoxicity induced by TCEP and TPHP was mediated by oxidative stress. Based on metabolomic analysis, different metabolic pathways were disrupted, including glycolysis/gluconeogenesis, pentose phosphate metabolism, purine metabolism, glutathione metabolism, amino acid biosynthesis, butanoate
-
单位茂名学院; 浙江大学; 中国海洋大学; 桂林理工大学