摘要

Pharmaceuticals and personal care products (PPCPs), an emerging class of highly recalcitrant water contaminants, have raised considerable concerns in environment community. Graphitic carbon nitride (CN) has shown a great potential towards the photodegradation of water contaminants under visible light irradiation. However, the conventional bulk CN (BCN) presents the amorphous structure, resulting in an inefficient yield of hydroxyl radicals (center dot OH) for the complete mineralization of PPCPs. This study provides fundamental insights into significantly enhancing the hydroxyl radical generation via improving the crystallinity of the pristine CN materials. Experimental measurements and accompanying density functional theory (DFT) computational analysis suggest that the crystalline carbon nitride (CCN) exhibited an enhanced adsorption ability towards the dissolved O-2. Upon the light irradiation, the adsorbed O-2 molecules readily undergo a direct two-electron reduction reaction on the CCN surface, instead of the conventional two successive single-electron reduction reactions on the BCN surface, to produce H2O2 subsequently converting into center dot OH radicals. Along with the improved charge separation efficiency and electron transfer ability, CCN-based materials show superior photocatalytic activity towards PPCPs-type pollutants, compared with the pristine BCN catalysts. Importantly, the catalyst show excellent photodegradation activities under natural sunlight irradiation, at low PPCPs concentration (20 mu g/L), in the mixed PPCPs solution or in the real wastewater/water samples, indicating the potential of CCN to enable practical ex situ destructive treatment of PPCPs-contaminated groundwater.

  • 单位
    广东工业大学; 中山大学