The De Novo Synthesis of 2-Phenylethanol from Glucose by the Synthetic Microbial Consortium Composed of Engineered Escherichia coli and Meyerozyma guilliermondii
摘要
Synthetic microbial consortia show promising applications for fine chemical production, especially with long metabolic pathways. In this study, a synthetic microbial consortium consisting of Escherichia coli YLC20 and Meyerozyma guilliermondii MG57 was successfully constructed, which could achieve efficient de novo 2-phenylethanol (2-PE) production from glucose. A tyrosine-deficient E. coli YLC20 overexpressing genes of aroF and pheA was first constructed, which could accumulate 29.5 g/L of L- phenylalanine (L-Phe) within 96 h from glucose accompanied by the coproduction of acetate and alpha-ketoglutarate (alpha-KG). Furthermore, the engineered M. guilliermondii MG57 was constructed through the stepwise metabolic engineering strategy, which could facilitate the 2-PE synthesis from L-Phe. Moreover, the cosubstrate and material intervention strategies were applied to improve the stability of the microbial consortium and 2-PE production. Finally, the synthetic microbial consortium could de novo synthesize 3.77 g/L of 2-PE from 80 g/L of glucose, providing a reference for the de novo synthesis of fine chemicals with long metabolic pathways.
