摘要
The evaluation of pilot brain activity is very important for flight safety. This study proposes a Hidden semi-Markov Model with Hierarchical prior to detect brain activity under different flight tasks. A dynamic student mixture model is proposed to detect the outlier of emission probability of HSMM. Instantaneous spectrum features are also extracted from EEG signals. Compared with other latent variable models, the proposed model shows excellent performance for the automatic inference of brain cognitive activity of pilots. The results indicate that the consideration of hierarchical model and the emission probability with t mixture model improves the recognition performance for Pilots' fatigue cognitive level.
-
单位上海交通大学