ScholarMate
客服热线:400-1616-289

Cuprous oxide-based nanocrystals with combined chemo/chemodynamic therapy to increase tumor drug sensitivity by reducing mitochondria-derived adenosine-triphosphate

He, Haoran; Wu, Jiaming; Liang, Min; Xiao, Yao; Wei, Xuejian; Cao, Yuqin; Chen, Zhiheng; Lin, Tian*; Ye, Miaosheng*
Science Citation Index Expanded
广东省人民医院; 广州医学院; 南方医科大学; 1; 5

摘要

Gastrointestinal (GI) tumor is a serious disease with high mortality rates and morbidity rates worldwide. Chemotherapy is a key treatment for GI, however, systematic side effects and inevitable drug resistance complicate the situation. In the process of therapy, P-glycoprotein (P-gp) could remove chemotherapy drugs from cells, thus causing multi-drug resistance. Chemodynamic therapy (CDT) utilizing Fenton chemistry has been used for cancer therapy, along with various combination therapies. The reactive oxygen species produced by CDT could inhibit P-gp's efflux pump function, which reduce chemoagents excretion and reverse drug resistance. In the present study, we developed novel nanocrystals (Cu2O@Pt NCs) to overcome drug resistance by reducing mitochondria-derived ATP through chemo/CDT in GI cancer. Furthermore, in vivo results in tumor-bearing mice demonstrated that treatment with Cu2O@Pt NCs with CDT and chemotherapy could achieve the most effective antitumor therapeutic effect with the least amounts of adverse effects. As a result, Cu2O@Pt NCs could provide a promising strategy for chemo/CDT-synergistic therapy.

关键词

Cuprous oxide (Cu2O) drug resistance P-glycoprotein (P-gp) chemodynamic therapy (CDT) mitochondria damage