ScholarMate
客服热线:400-1616-289

Multi-objective optimization of water injection in spark-ignition engines using the stochastic reactor model with tabulated chemistry

Franken, Tim*; Netzer, Corinna; Mauss, Fabian; Pasternak, Michal; Seidel, Lars; Borg, Anders; Lehtiniemi, Harry; Matrisciano, Andrea; Kulzer, Andre Casal
Science Citation Index Expanded
-

摘要

Water injection is investigated for turbocharged spark-ignition engines to reduce knock probability and enable higher engine efficiency. The novel approach of this work is the development of a simulation-based optimization process combining the advantages of detailed chemistry, the stochastic reactor model and genetic optimization to assess water injection. The fast running quasi-dimensional stochastic reactor model with tabulated chemistry accounts for water effects on laminar flame speed and combustion chemistry. The stochastic reactor model is coupled with the Non-dominated Sorting Genetic Algorithm to find an optimum set of operating conditions for high engine efficiency. Subsequently, the feasibility of the simulation-based optimization process is tested for a three-dimensional computational fluid dynamic numerical test case. The newly proposed optimization method predicts a trade-off between fuel efficiency and low knock probability, which highlights the present target conflict for spark-ignition engine development. Overall, the optimization shows that water injection is beneficial to decrease fuel consumption and knock probability at the same time. The application of the fast running quasi-dimensional stochastic reactor model allows to run large optimization problems with low computational costs. The incorporation with the Non-dominated Sorting Genetic Algorithm shows a well-performing multi-objective optimization and an optimized set of engine operating parameters with water injection and high compression ratio is found.

关键词

Water injection genetic optimization spark-ignition engine stochastic reactor model detailed chemistry