ScholarMate
客服热线:400-1616-289

Highly Efficient GSH-Responsive "Off-On" NIR-II Fluorescent Fenton Nanocatalyst for Multimodal Imaging-Guided Photothermal/ Chemodynamic Synergistic Cancer Therapy

Li, Haimei; Liu, Yang; Huang, Biao; Zhang, Caiju; Wang, Zichen; She, Wenyan; Liu, Yi; Jiang, Peng*
Science Citation Index Expanded
天津大学; 武汉大学; 中国医学科学院; y

摘要

Accurate diagnosis and effective treatment of malignant tumors under the interference of complex and diverse tumor microenvironments (TMEs) have become the focus of research. Herein, an innovative TME-activated biomimetic nanocatalyst with quad-modal imaging capabilities of second near-infrared (NIR-II) "turn-on " fluorescence imaging, magnetic resonance imaging (MRI), photoacoustic imaging (PAI), and photothermal imaging (PTI) was designed and developed for self-enhanced photothermal/chemodynamic synergistic therapy. The catalyst was fabricated by loading glucose oxidase (GOD) and Ag2 S quantum dots (QDs) on MnO(2 )nanosheets and coating them with a 4T1 cell membrane (AMG@CM), which enables them to successfully escape immune clearance and have appealing tumor-targeting ability and biocompatibility. The NIR-II fluorescence at 1130 nm of Ag2 S QDs quenched by MnO2 could be recovered in vivo through the glutathione (GSH)-induced degradation of MnO2 , enabling excellent TME-responsive tumor visualization. Simultaneously, the released Mn2+ can catalyze H2 O2 to produce abundant hydroxyl radicals (center dot OH), achieving photothermal synergistically enhanced chemodynamic therapy (CDT) under NIR-II radiation. Moreover, the CDT could be self-enhanced by GOD due to the extra produced H2 O2 . This work demonstrates a novel and highly efficient multimodal imaging-guided integrated treatment strategy for dual-enhanced CDT tumor precise diagnosis and treatment.

关键词

-