针对入侵检测中少数类异常数据的检测精度较低的问题,提出基于支持向量聚类的不平衡数据无监督检测算法.方法采用支持向量聚类对所有未知样本进行聚类,根据不同类别样本内在属性的差异,用改进的重抽样方法选择样本,平衡数据集的分布,对新的数据集进行学习.经过KDD99的测试表明,该方法能有效检测出少数类样本.