摘要
特征加权是聚类算法中的常用方法,决定权值对产生一个有效划分非常关键。基于模糊集、粗糙集和阴影集的粒计算框架,本文提出计算不同簇特征权重的聚类新方法,特征权值随着每次迭代自动地计算。每个簇采用不同的特征权重可以更有效地实现聚类目标,并使用聚类有效性指标包括戴维斯-Bouldin指标(Davies-Bouldin,DB)、邓恩指标(Dunn,Dunn)和Xie-Beni指标(Xie-Beni,XB)分析基于划分的聚类有效性。真实数据集上的实验表明这些算法总是收敛的,而且对交叠的簇划分更有效,同时在噪声和异常数据存在时具有鲁棒性。
-
单位南京信息工程大学; 南京航空航天大学; 河海大学