Summary

针对BP神经网络学习效率低、容易陷入局部最优等缺点,提出了一种基于主成分分析的混合蛙跳算法(Shuffle FrogLeaping Algorithm)优化的BP神经网络模型。使用主成分分析法对高维数据进行特征提取,作为网络输入;采用混合蛙跳算法优化BP神经网络的权系数和阈值,构建基于混合蛙跳算法神经网络的帕金森病分类模型。最后,以UCI中Parkinson数据为例,实验表明,新模型优于传统的BP网络。

  • Institution
    广东药学院