摘要
With increasing ecological and environmental concerns, tin (Sn)-based perovskite light-emitting diodes (PeLEDs) are competitive candidates for future displays because of their environmental friendliness, excellent photoelectric properties, and low-cost solution-processed fabrication. Nonetheless, their electroluminescence (EL) performance still lags behind that of lead (Pb)-based PeLEDs due to the fast crystallization rate of Sn-based perovskite films and undesired oxidation from Sn2+ to Sn4+, leading to poor film morphology and coverage, as well as high density defects. Here, we propose a ligand engineering strategy to construct high-quality phenethylammonium tin iodide (PEA2SnI4) perovskite films by using L-glutathione reduced (GSH) as surface ligands toward efficient pure red PEA2SnI4-based PeLEDs. We show that the hydrogen-bond and coordinate interactions between GSH and PEA2SnI4 effectively reduce the crystallization rate of the perovskites and suppress the oxidation of Sn2+ and formation of defects. The improved pure red perovskite films not only show excellent uniformity, density, and coverage but also exhibit enhanced optical properties and stability. Finally, state-of-the-art pure red PeLEDs achieve a record external quantum efficiency of 9.32 % in the field of PEA2SnI4-based devices. This work demonstrates that ligand engineering represents a feasible route to enhance the EL performance of Sn-based PeLEDs. @@@ The performance of eco-friendly PEA2SnI4 perovskite light-emitting diodes (PeLEDs) lags far behind that of lead-based PeLEDs. We demonstrated a ligand engineering strategy that uses GSH as a surface ligand to strongly interact with I- and Sn2+ in perovskites, which thus reduces the film crystallization rate and suppresses the oxidation of Sn2+ ions. Pure red PeLEDs based on the modified PEA2SnI4 achieve a record EQEmax of 9.32 %.image
-
单位厦门大学