摘要
针对传统计算机神经网络存在梯度弥散、局部最小值、非线性时间序列长期预测性能不佳和高维序列数据复杂度高等问题,提出时序深度置信网络模型(timing deep belief network model,T-DBN).该模型预训练阶段采用改进的贪婪预训练算法,在预训练过程中使用梯度修正并行回火(gradient fixing parallel tempering,GFPT)算法,采用重构误差确定网络深度,在反向调整阶段采用拟牛顿法(BFGS算法),以获得更加准确的预测精度.结合相空间重构理论和BP (back propagation)神经网络,对中国江西省2016—2020年农业机械总动力进行了预...
-
单位江西农业大学