ScholarMate
客服热线:400-1616-289

基于SVM和HOG的人脸检测算法

赵峰
中国知网
东南大学; 自动化学院

摘要

本文提出了一种基于支持向量机和方向梯度直方图的正面人脸检测方法。支持向量机通过学习方向梯度直方图特征来选取支持向量,然后根据这些支持向量构建最优分类面。实验使用的训练样本和测试样本从CMU的PIE多姿态和多光照人脸数据库中选取,样本大小被标准化为20×20像素。检测系统选用的分类器是支持向量机,其核函数是线性的。选用的特征是Navneet Dalal和Bill Triggs在行人检测问题上提出的方向梯度直方图。训练好的分类器在测试集合上的检出率为92%。在CMU+MIT正面人脸测试集合上也取得了较好的结果。实验结果表明,本文提出的方法在人脸检测问题上是比较有效的。

关键词

人工智能 人脸检测 支持向量机 方向梯度直方图 Artificial intelligence Face detection Support vector machine Histogram of oriented gradients