一种基于KL-AEPF的无人机侦察移动目标定位算法
中国知网
-
摘要
基于EPF的无人机侦察移动目标定位算法在采样阶段需要利用EKF算法计算所有粒子的均值和协方差,导致其计算量大。本文提出了一种基于KL距离的自适应EPF改进算法,该方法在采样阶段利用EKF算法更新前半部分粒子,后半部分粒子仍通过先验概率分布更新,然后根据两个粒子集概率分布间的KL距离自适应更新当前时刻的粒子数。在保证精度的同时选择合适的粒子数目,大幅度降低计算量,提高运算速度。通过实测飞行数据验证,该算法平均每个采样周期内粒子数为40,平均每个采样周期内计算时间为8 ms。与EPF算法相比,该方法能在保证定位精度的同时明显减少计算耗时,具有一定的工程应用价值。
关键词
无人机 目标定位 扩展卡尔曼粒子滤波 KL距离 自适应粒子滤波 UAV target positioning extended Kalman particle filtering KL divergence adaptive particle filtering
