Influence of the Magnetic Tip on Heterodimers in Electron Spin Resonance Combined with Scanning Tunneling Microscopy

Authors:Zhang, Xue; Reina-Galvez, Jose; Wolf, Christoph; Wang, Yu; Aubin, Herve; Heinrich, Andreas J.*; Choi, Taeyoung*
Source:ACS Nano, 2023, 17(17): 16935-16942.
DOI:10.1021/acsnano.3c04024

Summary

Investigating the quantum properties of individual spins adsorbed on surfaces by electron spin resonance combined with scanning tunneling microscopy (ESR-STM) has shown great potential for the development of quantum information technology on the atomic scale. A magnetic tip exhibiting high spin polarization is critical for performing an ESR-STM experiment. While the tip has been conventionally treated as providing a static magnetic field in ESR-STM, it was found that the tip can exhibit bistability, influencing ESR spectra. Ideally, the ESR splitting caused by the magnetic interaction between two spins on a surface should be independent of the tip. However, we found that the measured ESR splitting of a metal atom-molecule heterodimer can be tip-dependent. Detailed theoretical analysis reveals that this tip-dependent ESR splitting is caused by a different interaction energy between the tip and each spin of the heterodimer. Our work provides a comprehensive reference for characterizing tip features in ESR-STM experiments and highlights the importance of employing a proper physical model when describing the ESR tip, in particular, for heterospin systems.

Full-Text