摘要
The oxidation property of SiC-B4C-xAl(2)O(3) (x ranges from 0 wt% to 30 wt%) ceramics was studied in air at 1400 degrees C. Results show that the porous oxide layer becomes dense and smooth with addition of Al2O3. When the content of Al2O3 is proper, the DOP (degree of polymerization) of borosilicate network can be improved with increase of Al2O3 content, inhibiting the migration of atoms and molecular groups. With that, the crystallization of SiO2 and volatilization of B2O3 can be restrained. When the content of Al2O3 is excessive, the DOP of borosilicate network will be decreased, deteriorating the oxide layer morphology. It is believed that the damage of borosilicate network by excess Al2O3 should be responsible for this phenomenon. In this research, the SiC-B4C ceramic with optimal oxidation resistant can be obtained when the content of Al2O3 is 15 wt%.
-
单位中国科学院