为准确揭示高边坡在降雨影响下的渗压变化规律,掌握其安全状态,在降雨作用分析基础上,提出以积分型降雨因子进行边坡渗压分析;以径向基函数(RBF)神经网络为建模工具,构建渗压降雨监测模型结构,并根据高密度采集的实测序列与模糊C均值聚类(FCM)算法进行RBF计算中心的比较选择.应用表明,积分型降雨因子能有效反映降雨的作用,以实测数据建立的渗压监测模型取得了理想效果.