摘要
Concerns about limited fossil fuel and environmental degradation have promoted the interest in waste-to-fuel technology. The integration of municipal solid waste (MSW) gasification and electrolysis unit can achieve the triple goals of energy generation, environmental protection and energy storage. In this study, the MSW gasification integrated with solid oxide electrolysis cell (SOEC) unit to produce the methane, methanol and dimethyl ether (DME) technologies is compared to explore the potential benefits and weaknesses from the perspective of techno-economic performance and carbon emission analysis. The results show that the SOEC-assisted MSW-to-methane system owns the highest exergy efficiency with 60.60%, followed by methanol system (59.83%) and DME system (57.37%). Considering the direct and indirect CO2 emission, the methanol system owns the lowest CO2 emission intensity (CEI) with 1.57 kg/h center dot t. In addition, DME system owns the highest net present value (NPV) with 771.59 $/t compared with methane system (433.80 $/t) and methanol system (297.57 $/t). Economic analysis further reveals that DME system is not competitive compared with fossil-based fuel in the current market environment. Sensitivity analysis shows that DME system loses its economic feasibility when the on-grid tariff of renewable energy exceeds 0.06 kWh.