摘要
This paper addresses the problems of finite-time dissipative analysis and control for discrete-time memristive neural networks (DMNNs). With the help of interval matrix method (IMM), the challenges posed by the mismatched state-dependent parameters of DMNNs can be solved, which is different from the maximal absolute value operation-based method (MAVOM) in most existing literature. Based on a discrete-time LyapunovKrasovskii functional (LKF) and some inequality techniques, several sufficient conditions are established for achieving both finite-time bounded (FTB) behavior and finite-time (Q, S, R) - gamma dissipative (FTD). Moreover, the control gains are obtained by solving a series of linear matrix inequalities (LMIs) and convex optimization problems. Finally, the validity of our main findings and the superiority of the control strategies are verified through numerical simulations.