ScholarMate
客服热线:400-1616-289

Finite-time dissipative control for discrete-time memristive neural networks via interval matrix method

Yang, Jinrong; Chen, Guici*; Wen, Shiping; Wang, Leimin
Science Citation Index Expanded
-

摘要

This paper addresses the problems of finite-time dissipative analysis and control for discrete-time memristive neural networks (DMNNs). With the help of interval matrix method (IMM), the challenges posed by the mismatched state-dependent parameters of DMNNs can be solved, which is different from the maximal absolute value operation-based method (MAVOM) in most existing literature. Based on a discrete-time LyapunovKrasovskii functional (LKF) and some inequality techniques, several sufficient conditions are established for achieving both finite-time bounded (FTB) behavior and finite-time (Q, S, R) - gamma dissipative (FTD). Moreover, the control gains are obtained by solving a series of linear matrix inequalities (LMIs) and convex optimization problems. Finally, the validity of our main findings and the superiority of the control strategies are verified through numerical simulations.

关键词

Finite-time dissipative (FTD) Interval matrix method (IMM) Discrete-time memristive neural networks (DMNNs)